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1 Intro

A warning to all: while I will try my best to be as clear and simple as
possible, I will leaning into mathematical and programming notation where
I feel is appropriate. I highly suggest getting yourself familiar with this, as
it will make any future endeavours into mathematics and computer science
a lot more bearable.

Furthermore, this document is an extension of a blog post on my website,
luckys-corner.com, titled ”Impossible! An Introduction to Invariants”. As
such, there will be references to it in this article, although this document
should still be self-contained and readable as is.

2 Permutation Parity

Throughout this section, I will write down a permutation as follows:

Definition 1. A permutation of {1, 2, . . . , n} is a list of n numbers such
that each number from 1 to n appears in the list exactly once.

If l is one such list, I will explicitly write down it’s content using square
brackets (e.g. [3, 4, 6, 1, 5, 2]), and I will use l[k] to refer to the kth element
of the list (e.g. if l = [3, 4, 6, 1, 5, 2], then l[3] = 6 and l[6] = 2).

In the context of balls and pedestals from the blog post, we say that l[k]
is the number of the ball sitting on pedestal k.

In particular, we’ll define the initial permutation In to be the list of n
numbers that satisfies I[k] = k for every k i.e. all of the balls are on the
pedestal with the same number. For instance, I6 = [1, 2, 3, 4, 5, 6].

Next, we’ll need to define a swap:
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Definition 2. A swap of elements i and j (for i ̸= j) is an operation that
takes a list, and returns the list with the numbers at position i and j swapped.
We’ll denote the swap of elements i and j over list l as (i, j)l.

So for instance (2, 4)[3, 4, 6, 1, 5, 2] = [3, 1, 6, 4, 5, 2] and (5, 6)[3, 4, 6, 1, 5, 2] =
[3, 4, 6, 1, 2, 5]. In particular, we’ll allow ourselves to chain these swap operations
together, so (2, 4)(5, 6)(2, 5)[3, 4, 6, 1, 5, 2] = (2, 4)(5, 6)[3, 5, 6, 1, 4, 2]
= (2, 4)[3, 5, 6, 1, 2, 4] = [3, 1, 6, 5, 2, 4].

We’ll also say that a swap is a neighbour swap if it swaps elements that
are next to each other (e.g. (1, 2) or (5, 6)).

Finally, we’ll define when a permutation is even or odd:

Definition 3. A permutation l of n numbers is generated by swaps a1, a2, . . . , ak
if l = ak . . . a2a1In. A permutation l is even if it is generated by an even
number of swaps. A permutation l is odd if it is generated by an odd number
of swaps.

For instance, [3, 4, 6, 1, 5, 2] = (1, 4)(2, 6)(3, 4)(4, 6)[1, 2, 3, 4, 5, 6], thus
[3, 4, 6, 1, 5, 2] is generated by the swaps (4, 6), (3, 4), (2, 6), (1, 4) and so it is
an even permutation. Similarly, [3, 4, 6, 1, 2, 5] = (1, 4)(2, 5)(3, 4)(4, 5)(5, 6)[1, 2, 3, 4, 5, 6],
thus [3, 4, 6, 1, 2, 5] is generated by the swaps (5, 6), (4, 5), (3, 4), (2, 5), (1, 4)
and so it is an odd permutation.

Note that the way even and odd permutations were defined does not
make them mutually exclusive; it could be the case that a permutation is
generated by both an even number of swaps, and an odd number of swaps.
We’ll show now that this cannot be the case, by considering a calculable
quantity.

For i < j, define

outi,j(l) =

{
0 if l[i] < l[j]

1 if l[i] > l[j]

which indicates if the list is ’decreasing’. For instance, if l = [3, 4, 6, 1, 5, 2],
then out1,3(l) = 0 since l[1] = 3 < 6 = l[3], and out2,4(l) = 1 since l[2] =
4 > 1 = l[4].

We’ll furthermore define

tout(l) =
∑
i<j

outi,j(l)

to be the sum of outi,j(l) over all possible values of i and j. Below is the
table for permutations of {1, 2, 3}:
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l tout(l)

[1, 2, 3] 0
[1, 3, 2] 1
[2, 1, 3] 1
[2, 3, 1] 2
[3, 1, 2] 2
[3, 2, 1] 3

Our first results is as follows:

Lemma 1. Let l be a permutation, and consider some neighbour swap s =
(i, i+1). If tout(l) is even, then tout(sl) is odd. Similarly, if tout(l) is odd,
then tout(sl) is even.

Proof. We have the following equalities:

� if m, k is not equal to i or i+1, and m < k then outm,k(l) = outm,k(sl).

� if k < i, then outk,i(l) = outk,i+1(sl) and outk,i+1(l) = outk,i(sl).

� if k > i+ 1, then outi,k(l) = outi+1,k(sl) and outi+1,k(l) = outi,k(sl).

therefore, we have

tout(l)− outi,i+1(l) =
∑
k<m

k,m̸=i,i+1

outk,m(l) +
∑
k<i

(outk,i(l) + outk,i+1(l))

+
∑

i+1<k

(outi,k(l) + outi+1,k(l))

=
∑
k<m

k,m̸=i,i+1

outk,m(sl) +
∑
k<i

(outk,i+1(sl) + outk,i(sl))

+
∑

i+1<k

(outi+1,k(sl) + outi,k(sl))

= tout(sl)− outi,i+1(sl)

Therefore, tout(sl) = tout(l) + (outi,i+1(sl)− outi,i+1(l)). Now, since we
are swapping l[i] and l[i+1], therefore if outi,i+1(l) = 0, then outi,i+1(sl) = 1,
and if outi,i+1 = 1, then outi,i+1(sl) = 0, thus outi,i+1(sl)−outi,i+1(l) = ±1.
Therefore, if tout(l) is even, then tout(sl) is odd, and if tout(l) is odd, then
tout(sl) is even.
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Technically, this proof tells us a little more, namely that the value of
tout(l) after a neighbour swap changes by exactly 1.

This result allows us to build up to the case when s is a general swap.
This is because we can decompose the swap (i, j) into a sequence of neighbour
swaps as follows (let a = l[i] and b = l[j]):

1. If a and b are separated by n spaces, we perform n−1 neighbour swaps
to bring b next to a.

2. We swap a and b.

3. We perform another n− 1 neighbour swaps to bring a back to where
b began.

for a total of 2 · n− 1 neighbour swaps. For instance, we have (1, 4)l =
(3, 4)(2, 3)(1, 2)(2, 3)(3, 4)l for any permutation l with at least 4 elements.
The fact that 2 · n − 1 is odd is very important, because it gives us the
following general statement.

Lemma 2. Let l be a permutation, and consider some general swap s =
(i, j). If tout(l) is even, then tout(sl) is odd. Similarly, if tout(l) is odd,
then tout(sl) is even.

Proof. Suppose tout(l) is even. Then, from the above remark, we can
decompose s into an odd number of neighbour swaps t1, t2, t3, . . . , tk i.e.
sl = tk . . . t3t2t1l. We thus get by repeatedly applying Lemma 1 that, if
tout(l) is even, then tout(t1l) is odd, which implies tout(t2t1l) is even, which
implies tout(t3t2t1l) is odd etc. Since we have an odd number of neighbour
swaps, we are flipping the ’evenness’ of the value of tout an odd number of
times, which means tout(tk . . . t3t2t1l) = tout(sl) is odd. A similar argument
can be made if tout(l) is odd.

All of this brings us to the result that is permutation parity:

Theorem 1. If a permutation l is even, then tout(l) is even. Similarly, if
a permutation l is odd, then tout(l) is odd. In particular, since tout(l) can’t
be both even and odd, this means a permutation l can’t be both even or odd.

Proof. We perform a similar proof to that of Lemma 2: namely if l is of
length n, we write l = sk . . . s2s1In. We note that tout(In) = 0 because the
list is in order, so all of the components outi,j(l) = 0 for all i < j. Therefore,
since tout(In) is even, we get tout(s1In) is odd, so tout(s2s1In) is even etc.
If l is even, this means that the sequence s1, s2, . . . , sk has an even number
of swaps, thus tout(l) = tout(sk . . . s2s1In) is even. Similarly, if l is odd,
then tout(l) = tout(sk . . . s2s1In) is odd.
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3 Further Thoughts

If you are familiar with some Group Theory, then you might be more familiar
with permutations in the form of cycles e.g. [2, 4, 6, 1, 5, 3] = (1, 2, 4)(3, 6).
In this case, the equivalent formulation of permutation parity is as follows: a
permutation is even if it has an even number of even-length cycles, and odd
otherwise. So, for instance (1, 2)(3, 4) is even, while (1, 2, 3)(4, 5) is odd. In
this case, the difficulty would be proving that applying a swap (or a 2-cycle)
changes the ’evenness’ of the number of even-length cycles (which is true; in
fact, applying a 2-cycle changes the number of even-length cycles by exactly
1).
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